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ABSTRACT
Goblet cells (GCs) are specialised guardians lining the 
intestine. They play a critical role in gut defence and 
immune regulation. GCs continuously secrete mucus 
creating a physical barrier to protect from pathogens while 
harbouring symbiotic gut bacteria adapted to live within 
the mucus. GCs also form specialised GC-associated 
passages in a dynamic and regulated manner to deliver 
luminal antigens to immune cells, promoting gut tolerance 
and preventing inflammation. The composition of gut 
bacteria directly influences GC function, highlighting the 
intricate interplay between these components of a healthy 
gut. Indeed, imbalances in the gut microbiome can disrupt 
GC function, contributing to various gastrointestinal 
diseases like colorectal cancer, inflammatory bowel 
disease, cystic fibrosis, pathogen infections and liver 
diseases. This review explores the interplay between GCs 
and the immune system. We delve into the underlying 
mechanisms by which GC dysfunction contributes to the 
development and progression of gastrointestinal diseases. 
Finally, we examine current and potential treatments that 
target GCs and represent promising avenues for further 
investigation.

INTRODUCTION
The gastrointestinal (GI) tract presents a 
unique challenge for the immune system. Its 
extensive surface, lined by a simple columnar 
epithelium, faces a constant barrage of 
dietary components and potentially harmful 
microbes.1 Beneath this epithelium lies the 
largest concentration of immune cells in the 
body. A healthy state requires that intestinal 
immune cells efficiently distinguish between 
harmless dietary substances and invaders.2 
This distinction allows the immune system to 
develop tolerance towards the former, a hall-
mark mediated by tolerogenic dendritic cells 
(DCs) and antigen-specific T regulatory cells 
(Tregs).3–5

Goblet cells (GCs) are specialised intes-
tinal epithelial cells (IECs) that play a crucial 
role in gut defence. They are distributed 
throughout the epithelial lining of both the 
small and large intestines, with a notable 
abundance in the colon, where a robust 
mucus barrier is particularly necessary.6 The 

apical surface of GCs is characterised by 
microvilli which significantly increase the 
surface area available for mucin secretion 
into the intestinal lumen. These cells are 
equipped with a well-developed endoplasmic 
reticulum and Golgi apparatus which are vital 
for the synthesis, modification and packaging 
of mucins. Their cytoplasm is distinguished 
by numerous secretory granules containing 
mucin precursors highlighting their role in 
mucin production and secretion. They contin-
uously secrete and renew the mucus layer, 
physically pushing away pathogens from the 
gut lining (figure 1). There are over 20 iden-
tified mucins (labelled MUC1 to MUC21), 
each with slightly different structures and 
functions.7 In the intestine, the predominant 
mucin is MUC2. Deficiency in MUC2 leads to 
inflammation and increased susceptibility to 
infection in mice, highlighting its importance 
in gut health.8 Mucins also have binding sites 
for bacteria, further hindering their invasion.6 
Some bacterial species in the gut use compo-
nents of the mucus layer as an energy source 
influencing both mucus production and the 
overall gut microbiome composition.9

When the gut encounters challenges such 
as microbes or harmful antigens, GCs are 
triggered to release mucins at an accelerated 
rate. Various factors, such as neuropeptides, 
cytokines and lipids induce mucin secretion.10 
A key factor in mucin secretion is the activa-
tion of muscarinic acetylcholine receptor 1 
(mAChR1).1 The role of this activation will 
be elaborated on in the following sections of 
this manuscript. GCs also secrete a diverse 
plethora of interleukins (IL) such as IL-25, 
IL-18, IL-17, IL-15, IL-13, IL-7 and IL-6 and 
chemokines such as chemokine exotoxin, 
chemokine C-C motif ligand (CCL)6, CCL9 
and CCL20 which are signalling molecules 
that further modulate the immune system11 
(figure 1). By combining these functions, GCs 
play a vital role in maintaining a healthy gut 
environment and preventing disease. Beyond 
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their well-documented role in mucin production, recent 
research suggests GCs play a more multifaceted role in 
immune regulation through the formation of GC-associ-
ated antigen passages (GAPs) (figure 1).5 In this review, 
we will focus on this critical function and the secretion 
of antimicrobial peptides and proteins that enhance the 
protective barrier function and contribute to the immune 
response. Furthermore, we examine the intricate inter-
play between GCs and the commensal microbiota and we 
also explore the underlying mechanisms by which GCs 
dysfunction promotes the development and progression 

of gastrointestinal diseases. Finally, the review examines 
current and potential therapeutic strategies that target 
GCs. These promising avenues offer exciting possibilities 
for future research and development of novel gut disease 
treatments.

GOBLET CELL-ASSOCIATED ANTIGEN PASSAGES: MOLECULAR 
PATHWAYS AND IMMUNE RESPONSE
GCs dynamically create specialised structures 
known as GAPs, which transfer luminal antigens to 

Figure 1  Goblet cells functions. Goblet cells (GCs) play a multifaceted role in the mucosal immune system, including (A) 
Mucin secretion: GCs constantly produce mucins forming a protective gel layer on the surface of the intestine. This mucus 
barrier acts as a first line of defence, trapping pathogens and preventing them from reaching the underlying tissues. Under 
normal circumstances, the thickness of this gel remains upheld through continuous mucin secretion. Nevertheless, when 
the gut faces challenges such as microbial intrusion or harsh stimuli, GCs undergo stimulation to accelerate mucin release. 
Both, physiological or pathological stimuli, result in a marked increase in intracellular calcium ions (Ca2+)-triggered stimulated 
mucus secretion. Various factors like neuropeptides, cytokines and lipids further influence the stimulated mucin release. On 
acetylcholine (ACh) exposure, the activation of muscarinic ACh receptor 1 (mAChR1) also triggers the mobilisation of Ca2+ 
from intracellular reserves contributing to mucus secretion and effectively displacing pathogens from the gut lining. (B) Other 
secretory functions: The release of chemokines and cytokines initiates and strengthens Th2 responses facilitating tissue repair 
and attracting effector cells that perform functions crucial to innate immunity extending beyond mere barrier maintenance. GCs 
also discharge antimicrobial peptides (AMPs) including resistin-like molecule ß, regenerating islet-derived 3 proteins and trefoil 
factor which effectively eliminate commensal bacteria and pathogens that breach the mucus layer. (C) GC-associated antigen 
passages (GAPs): Activation of mAChR4 by ACh initiates a process termed fluid-phase bulk endocytosis culminating in the 
formation of GAPs in the small intestine. Endocytic vesicles containing luminal fluid-phase cargo are transported through the 
cell for degradation, membrane recycling and transcytosis. This allows the cargo to be acquired by lamina propria dendritic cells 
(LP-DCs). The main LP-DCs subset subadjacent to GAPs is the CD103+CX3CR1− subset and possesses preferential tolerogenic 
properties. Created with BioRender.com. E.R., endoplasmic reticulum; IEC, intestinal epithelial cells.
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antigen-presenting cells (APCs), particularly mononu-
clear phagocytes (MNP) like DCs located in the lamina 
propria (LP). This mechanism is essential for main-
taining gut immune tolerance and suppressing inflam-
matory responses.5 The neurotransmitter ACh acts as the 
master conductor directing both mucus secretion and 
GAP formation. ACh activates different muscarinic recep-
tors on GCs depending on the location in the gut. In the 
small intestine and proximal colon, mAChR4 orchestrates 
GAP formation while mAChR3 takes over this role in the 
distal colon.12 This ensures that GAP activity is tailored 
to the specific needs of each intestinal segment. ACh 
also stimulates the release of calcium ions (Ca2+) facili-
tating the fusion of vesicles containing mucin and endo-
cytosed luminal content with the cell surface. This dual 
action allows GCs to simultaneously build and maintain 
the protective mucus barrier while sampling the luminal 
environment for potential antigens.1 13

ACh originates from various sources including enteric 
neurons, fibroblasts, IECs and immune cells.14 A complex 
interplay of factors further influences its secretion into 
the intestinal lumen. These encompass dietary compo-
nents such as short-chain fatty acids (SCFAs) and vege-
table glucosides as well as chemical stimuli like acids 
and ions and even microbial pathogens.15–18 SCFAs are 
synthesised within the gut lumen through the microbial 
fermentation of indigestible carbohydrates that contain 
β-glycosidic bonds between glucose monomers which 
remain inaccessible to mammalian enzymes.15 On their 
production, SCFAs trigger the release of epithelial ACh 
prompting anion chloride secretion by IECs.15 In addi-
tion, vegetable glucosides like paeoniflorin, a principal 
bioactive component of Paeonia lactiflora Pall and quer-
cetin, a flavonoid commonly found in fruits and vegeta-
bles, proved to inhibit acetylcholinesterase activity and 
promote the expression of serotonin thereby contrib-
uting to gastric motility and the release of ACh in rats.19 20

When two ACh molecules bind to nicotinic ACh 
receptors, they induce a conformational change in the 
pentameric structure forming a transmembrane pore.21 
This pore permits the passage of sodium, potassium and 
Ca2+ resulting in cell depolarisation and ACh release. 
This process enhances smooth muscle contraction and 
gastrointestinal motility with potential modifications to 
neuronal excitability and neurotransmitter release due 
to ion-level fluctuations.21 Organic acids, such as lactic 
and butyric acids, produced during fermentation by gut 
bacteria have been implicated in stimulating enteroendo-
crine cells or directly affecting enteric neurons leading to 
the release of ACh.16 In addition, lactic acid has also been 
associated with the inhibition of acetylcholinesterase and 
butyrylcholinesterase.22

In addition, pathogen infections can markedly affect 
ACh secretion. For instance, during Citrobacter roden-
tium (C. rodentium) infections, choline acetyltransferase 
(ChAT)+ T-cells migrate to the colon.18 These cells play 
a pivotal role in mucosal immunity and interactions 
with commensal microbes by synthesising and releasing 

ACh. Conditional removal of ChAT in T-cells leads to a 
significant escalation in C. rodentium burden within the 
colon highlighting the critical role of ACh in bolstering 
mucosal defences.18 ACh also plays a critical role in regu-
lating the release of mucus and antimicrobial peptides 
as well as modulating ion and fluid secretion in IECs.18 
These functions collectively contribute to maintaining 
a balance between the host and commensal microbiota 
while restricting pathogen invasion.23

Enterotoxins such as cholera toxin, produced by Vibrio 
cholerae24 or those generated by enterotoxigenic Esch-
erichia coli (E. coli), increase intracellular levels of cyclic 
adenosine monophosphate (cAMP) in enterocytes. This 
stimulates ACh secretion from enteric neurons leading 
to hypersecretion of fluid and electrolytes into the gut 
lumen contributing to the characteristic watery diarrhoea 
observed in bacterial infections.24 25

Several bacterial strains including Lactobacillus plan-
tarum, L. rhamnosus, L. fermentum, Bacillus subtilis (B. 
subtilis), E. coli and Staphylococcus aureus (S. aureus) exhibit 
the capability to produce ACh.26 Notably, B. subtilis 
surpasses E. coli and S. aureus in the quantity of ACh it 
produces. Although the expression of acetylcholines-
terase in enteric GCs remains unclear, recent studies have 
identified the presence of butyrylcholinesterase within 
GCs. While less efficient, butyrylcholinesterase can still 
contribute to ACh breakdown.27 This interplay ultimately 
leads to differential expression of ACh between the small 
intestine and the colon.18 19

The frequency of GAPs is not uniform throughout the 
intestine in mice. While approximately 4–6 GAPs are 
found per villus in the small intestine of healthy adult 
wild-type mice, a more dynamic and transient pattern 
emerges in the colon. In the latest, GAPs first appear in 
the second week of life, peaking around weaning and 
then declining in adulthood.28 Colon microbes impede 
the formation of GAPs in a process reliant on myeloid 
differentiation primary response 88 (MyD88) which acti-
vates epidermal growth factor receptor (EGFR) and p42/
p44 mitogen-activated protein kinase leading to their 
phosphorylation.13 The proximal colon hosts a higher 
bacterial density compared with the small intestine and 
features a thinner mucus layer than the distal colon.13 
Through the suppression of microbial sensing, the 
immune system of the proximal colon is protected from 
exposure to luminal bacteria, thus averting inflammatory 
reactions. This temporal regulation plays a pivotal role in 
shaping the gut immune system during development.28

Similarly, IL-1β can also regulate GC responsiveness 
to ACh by binding to its receptor on the apical surface 
of GCs, activating MyD88 and subsequently transacti-
vating EGFR.29 Additionally, commensal and pathogenic 
bacteria and their metabolites can trigger MyD88 signal-
ling via Toll-like receptors (TLRs) on the cell surface 
further impacting EGFR activity.29 Interestingly, GCs 
express different TLRs depending on their location. 
All GCs express TLRs 1–5, but small intestinal GCs 
have slightly higher levels of TLR3 while colonic GCs 
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express significantly higher levels of TLRs 1, 2, 4 and 
5.30 This variation reflects the changing bacterial envi-
ronment from the small intestine to the colon where 
immune surveillance is also heightened. Consequently, 
small intestine and colonic GCs exhibit distinct sensi-
tivities and responses to TLR signalling, mirroring the 
differences observed in GAP formation between these 
regions.30

GAP formation has also been characterised as an ACh-
dependent endocytic process. This mechanism suggests 
the GAPs are formed by the recovery of secretory granule 
membranes which traffic fluid-phase cargo to the trans-
Golgi network and across the cell by transcytosis as well as 
the transport of fluid-phase cargo by endosomes to multive-
sicular bodies and lysosomes. The process is reliant on phos-
phoinositide 3-kinase, actin polymerisation and microtubule 
transport for its execution.1 Under normal conditions, LP 
Foxp3+ peripheral Tregs (pTregs) in the small intestine and 
distal colon control tolerance to external antigens. These 
pTregs inhibit CD4+ and CD8+ T-cell activation, modulate gut 
mast cell function and redirect B cell immunoglobulin (Ig) E 
secretion. However, the continued presence of their specific 
antigen is vital for the survival of small intestine Tregs.31 This 
is where GAPs take centre stage.13 These transient structures 
transport dietary and luminal antigens (≤0.02 µm) alongside 
autocrine factors like mucins and integrin αvβ6 which induce 
tolerogenic responses by promoting transforming growth 
factor (TGF)-β upregulation.13 These antigens are primarily 
presented to CD103+ DCs in the small intestine (SI). These 
DCs, equipped with retinaldehyde dehydrogenase for gener-
ating all-trans retinoic acid, stimulate T-cell proliferation, 
induce adaptive immune responses and promote mucosal 
immune functions like IgA responses and gut-homing 
lymphocytes.5 Interestingly, the more frequent interaction 
between CD103+ APCs and GAPs compared with CD11b+C-
D103−CX3CR1+ APCs may be attributed to their superior 
migration ability, response to inflammatory factors and T-cell 
stimulation capabilities.32 Additionally, this phenomenon is 
influenced by the location of DCs, where conventional DCs 
type 2 (cDC2s) are more abundant in the small intestine 
compared with the colon, while cDC1s are more prevalent 
in the colon.33 34 The CD103-CX3CR1+ APCs, on the other 
hand, are crucial for T helper (Th)17 T-cell formation and 
tumour necrosis factor (TNF)-α production.32 GCs, through 
GAPs, deliver not only antigens but also imprint APCs with 
tolerogenic properties. This includes stimulating IL-10 
production by macrophages and enhancing retinoic acid 
activity in DCs, both contributing to an anti-inflammatory 
environment. Furthermore, the sampling of the endogenous 
GC protein MUC2 by MNP is associated with improved Treg 
cell induction and promotes the development of a tolero-
genic MNP phenotype.35 These diverse interactions high-
light the remarkable interplay between GCs and the immune 
system. Unveiling the intricate mechanisms of this interplay 
holds immense potential for developing novel therapeutic 
strategies for gut-related diseases.

OTHER GOBLET CELL-SECRETED FACTORS SHAPING THE 
IMMUNE RESPONSE
GCs also release a tailored mix of proteins, cytokines and 
chemokines guided by signals from antigen-encountered 
APCs. These signals encompass recognition of microbial 
patterns, cytokines such as IL-10 and TGF-β and contri-
butions from Tregs and other immune-modulating mole-
cules.35 This orchestrated response not only enables a 
balanced immune reaction against pathogens but also 
facilitates the promotion of tolerance towards beneficial 
gut microbes.36

Furthermore, GCs basolaterally secrete resistin-like 
molecule (RELM-β), a protein with direct bactericidal 
properties against commensals and pathogens while 
also fostering Treg proliferation and differentiation to 
support immune tolerance. RELM-β serves as a chemo-
attractant recruiting CD4+ T cells to the colon and 
enhancing IL-22 production for tissue repair.37 Trefoil 
factor 3 (TFF3) supports Treg development, fights patho-
gens, aids tissue repair, promotes epithelial cell adhesion, 
regulates cell migration, promotes tight junction for gut 
barrier strength and exhibits anti-inflammatory effects.38 
IgG Fc-binding protein (FCGBP), a protein secreted by 
colon GCs, forms a heterodimer with TFF3. This collab-
oration enhances microbial clearance and protects the 
mucus barrier’s structural integrity. FCGBP plays a critical 
role in the gut’s immune defence by facilitating the effi-
cient delivery of antibodies to the gut lumen. This protein 
binds to the Fc portion of antibodies enabling their trans-
port across epithelial layers where they can neutralise 
pathogens and protect the gut from harmful invaders.39

Protein arginine methyltransferase 5 (PRMT5) modi-
fies other proteins through arginine methylation and 
regulates genes essential for GCs function impacting 
mucus production and assembly. Interestingly, PRMT5 
regulates calcium-activated chloride channel regulator 
1 (CLCA1), a key mucus assembly factor through its 
methyltransferase activity. However, its regulation of 
other structural proteins like FCGBP and MUC2 occurs 
independently of this activity.40 As a key part of intestinal 
mucus, CLCA1 contributes to its robust viscoelastic prop-
erties ensuring a strong barrier against luminal insults. 
Through proteolytic activity, it cleaves mucus strands 
facilitating smoother mucus flow and preventing stagna-
tion characterised by the accumulation and lack of move-
ment of mucus. CLCA1 interacts with MUC2 enhancing 
the formation of a physical barrier against pathogens. In 
addition, it regulates tight junction protein expression 
and displays anti-inflammatory activity, reinforcing gut 
defence mechanisms.41

Zymogen granule protein 16 (ZG16) plays a crucial 
role in maintaining epithelial integrity by regulating cell 
proliferation and differentiation.42 It also exhibits anti-
microbial activity, protecting the gut lining from harmful 
invaders. Notably, ZG16 specifically binds to mannan on 
the cell walls of certain fungi, potentially triggering an 
immune response against these pathogens.43 Addition-
ally, it binds to peptidoglycans in gram-positive bacteria, 
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forming aggregates that cannot easily penetrate the 
mucus layer.44 Interestingly, ZG16 expression decreases 
in precancerous lesions and colorectal cancer suggesting 
its potential role as a tumour suppressor.44

Ly6/PLAUR domain containing 8 (Lypd8), vital within 
GCs, binds to harmful bacteria’s flagella, hindering their 
movement and preventing gut epithelium invasion. 
Lypd8 deficiency increases susceptibility to intestinal 
inflammation and bacterial overgrowth, underscoring its 
role in maintaining the gut barrier.45 46 Reduced Lypd8 
expression in precancerous lesions and colorectal cancer, 
coupled with its inhibitory effect on cancer cell prolifer-
ation and migration on overexpression, implies its thera-
peutic potential for colon cancer.45 46

Secreted by plasma cells and transported across the 
epithelium by IECs, secretory immunoglobulin A (sIgA) 
directly binds to pathogens, inhibiting their movement 
and adhesion to the gut lining.47 It appears that GCs may 
also facilitate the transcytosis of IgA from the interstitial 
space into the lumen of the intestine, respiratory tract or 
other ducts, although this process has not been fully eluci-
dated.48 Additionally, sIgA forms immune complexes with 
invading bacteria, facilitating their clearance through 
phagocytosis or expulsion. Recent studies reveal that gut 
microbiota can influence the production of sIgA, high-
lighting the intricate interplay between the gut ecosystem 
and immune defence.47 RELM-β, TFF3, Lypd8 and sIgA 
induce the secretion of antimicrobial peptides by various 
IECs, including GCs and Paneth cells.49 Antimicrobial 
peptides like regenerating islet-derived 3 (REG3) act as 
a first line of defence against invading pathogens directly 
killing bacteria, disrupting their cell membranes and 
inhibiting their growth. They also act as immune regu-
lators, presenting signals that activate immune responses 
and promote mucosal repair. Importantly, REG3 selec-
tively binds to bacteria49 causing cytoderm destruction 
and leading to their death.50

These components, along with GAP formation and 
the well-studied mucins, contribute significantly to the 
complex functions of GCs. By understanding their indi-
vidual roles and synergistic effects, we can gain a deeper 
appreciation for the intricate mechanisms that maintain 
gut health and develop novel therapeutic strategies for 
various gut-related diseases.

GOBLET CELLS AND THE MICROBIOTA
The interplay between GCs, mucin and the microbiota is 
multifaceted and crucial for maintaining immune toler-
ance.51 The microbiota impacts GC function by stimu-
lating mucin expression and promoting their appropriate 
differentiation.52 Serotonin, primarily produced by 
enterochromaffin cells in the gastrointestinal tract, acts 
on GCs via receptors like 5-hydroxytryptamine (5-HT) 
3 and 5-HT4. This interaction stimulates GCs to secrete 
mucus.53 Additionally, serotonin plays a crucial role in 
intestinal mucosal health and turnover.54 Research indi-
cates that commensal microbes can trigger serotonin 

secretion through activation of the receptor 5-HT4 on 
GCs, promoting the release of MUC2.54 Recent studies 
have observed that under normal conditions, both MUC2 
and serotonin are found in the cytoplasm of GCs, with 
serotonin’s presence facilitated by the serotonin trans-
porter present in these cells.55 SCFAs can upregulate 
mucin production.56 Furthermore, commensal mucolytic 
bacteria such as Akkermansia muciniphila (A. muciniphila), 
Bifidobacterium bifidum, Bacteroides fragilis (B. fragilis), 
Bacteroides thetaiotaomicron and Ruminococcus gnavus (R. 
gnavus), play a role in maintaining the optimal turnover 
of the outer mucus layer providing a competitive advan-
tage to the host by excluding pathogens.57 In return, 
mucins offer attachment sites favouring a habitable envi-
ronment and serve as a source of energy for some bacte-
rial species.58 This symbiotic interaction contributes to 
the overall health of the gut and is vital for preventing 
inflammatory responses triggered by pathobionts.59

In GI diseases, alterations in the mucin-associated micro-
biome and mucin-degrading bacteria can have significant 
implications for gut health due to their proximity to IECs 
and the immune system. Certain commensal mucin-
degrading bacteria, including Bacteroides spp., Parabac-
teroides spp., A. muciniphila, and Bifidobacterium dentium, 
can elicit a mild inflammatory response characterised 
by low levels of IL-8 and TNF-α.60 Interestingly, these 
bacteria also exhibit a suppressive effect on the inflam-
matory response induced by E. coli achieved through the 
downregulation of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway.60 More-
over, the presence of gut commensals has demonstrated 
potential in enhancing the function of the epithelial tight 
junctions by regulating the mRNA expression of zonula 
occludens-1, occludin, claudin-1, and E-cadherin.60

Conversely, an overabundance of mucin degrada-
tion may undermine the integrity of the mucosal layer, 
potentially permitting luminal bacteria and antigens to 
infiltrate IECs and reach the immune system, thereby 
triggering inflammatory diseases. For example, inflamma-
tory bowel disease (IBD) is characterised by an elevated 
total bacterial load, particularly enriched in mucin-
degrading bacteria.61 Notably, Ruminococcus torques and R. 
gnavus have been consistently observed to be abundant 
in patients with IBD whereas A. muciniphila is notably 
diminished.62 63 Furthermore, in the ileum of patients 
diagnosed with Crohn’s disease (CD), an increased pres-
ence of R. gnavus appears to coincide with a decreased 
abundance of Faecalibacterium prausnitzii, a key butyrate-
producing bacterium, accompanied by a decline in the 
Clostridium leptum and Prevotella nigrescens subgroups.64 65

Dysbiosis of the mucin-associated microbiome has 
also been implicated in colorectal cancer (CRC). These 
patients commonly harbour predominant pathogenic 
bacteria such as Fusobacterium nucleatum, E. coli and B. 
fragilis, a bacterium with pro-carcinogenic properties in 
their intestines.66 On the other hand, A. muciniphila is 
selectively decreased in the faecal microbiota of patients 
with CRC.67
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Moreover, in patients with cystic fibrosis (CF), gut 
microbiome dysbiosis begins early in life and persists 
through adolescence and adulthood.68 Children with CF 
exhibit lower alpha diversity and delayed microbiome 
maturation compared with healthy counterparts. Patients 
with CF display elevated levels of Veillonella and E. coli and 
reduced levels of Bacteroides, Faecalibacterium and Akker-
mansia.68 Understanding these changes may contribute 
to elucidating the mechanisms that initiate and perpet-
uate gut inflammation and drive the progression of these 
diseases.

The fate of GCs in the absence of gut microbiota is a 
question worth exploring. In germ-free environments, 
there is a reduction in the number of GCs both in the 
small intestine and the colon, accompanied by reduced 
storage of mucin granules compared with the normal 
state.69 70 The absence of microbial signals deprives GCs 
of their usual regulatory cues impacting their secre-
tory function. Furthermore, there is a decrease in the 
expression of certain antimicrobial molecules, such as 
angiogenin 4 and REG 3 gamma (REG3G) and a lack of 
expansion in the CD4+ T-cell population.71 72 The mucin 
glycosylation pattern, denoting the specific glycans 
arrangement on the protein backbone, is altered in 
germ-free mice. These alterations entail decreased levels 
of specific glycosyltransferases responsible for elongating 
O-glycans leading to the development of shorter MUC2 
O-glycans. This occurrence is intricately associated with 
the absence of microbial metabolites such as acetate and 
can impact the overall functionality of the mucus layer 
affecting its protective properties.73 Interestingly, germ-
free mice exhibit adherent mucus in the small intestine 
and permeable mucus in the colon.74

Further investigation using germ-free mice has provided 
insight into the role of GAPs. Unlike conventional mice, 
small intestinal and colonic GAPs are open in germ-free 
mice through which CD103+ LP-DCs can uptake anti-
gens from the intestinal lumen under steady-state condi-
tions.5 13 Notably, the presentation of luminal antigens by 
LP-DCs derived from germ-free mice exhibited superior 
luminal antigen presentation capabilities compared with 
LP-DCs from mice housed under specific pathogen-free 
(SPF) conditions. Specifically, in the SI, CD103+ LP-DCs 
demonstrated superior luminal antigen presentation 
capabilities compared with CD103− LP-DCs among germ-
free mice.5 This preferential targeting of antigens to DCs 
with tolerogenic properties suggests a pivotal role in main-
taining intestinal immune homeostasis by GAPs.5 While 
colonic GCs showed a slight rise in germ-free mice, this 
uptick alone cannot elucidate the significant emergence 
of colonic GAPs in these mice. Moreover, GCs did not 
show an increase in antibiotic-treated mice, despite these 
mice displaying a comparable significant rise in GAPs.70 
The development of colonic GAPs in germ-free mice was 
suppressed by mAChR4 antagonists unlike conventional 
mice.13 However, microbiota transplantation and bacte-
rial components such as lipopolysaccharide prompted a 
swift decline in colonic GAPs indicating that this pathway 

may significantly contribute to the absence of proximal 
colonic GAPs.28 75

Investigating GCs in germ-free mice underscores the 
essential role of gut bacteria in ensuring their optimal 
function, emphasising the host’s dependence on micro-
bial signals for maintaining a healthy gut.

IMPACT OF GASTROINTESTINAL CONDITIONS ON GOBLET CELL 
FUNCTION
GC dysfunction, characterised by altered numbers, 
abnormal differentiation and disrupted mucin produc-
tion, significantly contributes to the development and 
progression of various gastrointestinal diseases. Chronic 
inflammation within the mucosa disrupts GC function 
and alters mucin production while microbial infections 
can directly damage GCs or modify their secretory func-
tion. Dysregulation of mucin production resulting from 
imbalances in synthesis and secretion pathways also 
leads to pathological changes in GCs. Genetic mutations 
affecting GC differentiation, function or survival can 
predispose individuals to GC-related disorders. Environ-
mental factors, such as exposure to toxins, pollutants, 
or dietary components, may further impact GC health 
and function (figure 2). Understanding these processes 
is essential for developing effective strategies to manage 
and treat conditions involving GC pathology. Unravelling 
the mechanisms underlying these disruptions will aid in 
the development of targeted therapies aimed at restoring 
GC function and improving gut health.

Inflammatory bowel disease
IBD, including CD and ulcerative colitis (UC), disrupts the 
function of GCs in the gut lining. Studies show a decrease 
in GC numbers especially during active disease flares 
compared with remission. Furthermore, IBD disrupts GC 
maturation leading to the production of less functional 
immature cells. These cells produce less mucus which 
results in a thinner mucus layer and weakens the mucus 
barrier’s protective properties.76 77 The type of mucus 
itself is altered in IBD with alterations in MUC2 O-gly-
cosylation, particularly affecting sialylation and sulfation. 
This results in an increase in certain smaller glycans and 
a reduction in several complex glycans.76 77 There is a 
shift towards pro-inflammatory mucins, further fuelling 
the inflammatory response. Importantly, the expres-
sion of MUC2, MUC5AC, MUC5B and MUC7 is often 
reduced in patients with IBD. Even in non-inflamed areas 
of patients with CD, some transmembrane and secreted 
mucins like MUC3, MUC4 and MUC5B are also downreg-
ulated.78 Research suggests this decrease in GC products 
like FCGBP, CLCA1 and ZG16 in patients with UC might 
be independent of local inflammation but is linked to 
increased bacterial infiltration and activation of IL-18.79 
This impaired mucus barrier allows bacteria and antigens 
from the gut lumen to penetrate the intestinal lining, trig-
gering and perpetuating the inflammatory response seen 
in IBD.79
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Colorectal cancer
CRC is one of the leading causes of cancer-related death 
worldwide. In CRC, GC function and differentiation 
are disrupted leading to abnormal mucin profiles with 
changes in type and amount produced. MUC1 showcases 
markedly shortened carbohydrate side chains including 
Thomsen-nouvelle (Tn) and sialyl-Tn antigen (sTn), 
which facilitate its immunodetection. MUC1 upregula-
tion is associated with a worse prognosis and a higher risk 
of metastasis.80 This is attributed to MUC1’s hindrance 
of T-cell proliferation impairing the efficient elimination 
of cancer cells by cytotoxic lymphocytes and thus facil-
itating evasion from immune detection.80 Furthermore, 
the elevation of negatively charged sialic acid residues on 
MUC1 could potentially advance metastasis progression 
by disrupting cell–cell adhesion.80 Notably, overexpres-
sion of MUC5AC, a mucin normally found in the stomach, 

and reduced MUC2 expression or altered glycosylation 
impact the mucus layer’s integrity and was strongly asso-
ciated with lymph node metastasis, poor cellular differ-
entiation, advanced tumour stage and poor prognosis 
when comparing healthy mucosa to patients with CRC.81 
In addition, MUC5AC promotes tumorigenesis through 
the CD44-Src-integrin axis in mice.82

Other mucin components are also altered in CRC. 
TFF3 expression is significantly higher compared with 
healthy tissues and is associated with advanced stages 
of the disease and invasion of blood vessels or nerves.38 
Furthermore, TFF3 is implicated in poor prognosis due 
to its role in promoting the clonogenic survival of CRC 
cells by upregulating prostaglandin E receptor subtype 4 
through signal transducer and activator of transcription 
3 (STAT3) activation.83 A recent study demonstrated 
that, unlike healthy colons where MUC2 and TFF3 are 

Figure 2  Gastrointestinal disorders impacting goblet cell (GC) function. The malfunction of GCs, marked by changes in 
numbers, abnormal differentiation and modified mucin production, plays a substantial role in the onset and advancement of 
various gastrointestinal disorders. These include inflammatory bowel disease, colorectal cancer, mucinous adenocarcinoma, 
pathogen infections, cystic fibrosis and liver diseases. Understanding the mechanisms behind these disruptions is essential for 
devising targeted therapies aimed at reinstating GC function and enhancing overall gut health. Created with BioRender.com. 
CLCA1, calcium-activated chloride channel regulator 1; FCGBP, Fc-binding protein; GAP, GC-associated antigen passage; IL-
18, interleukin 18; MUC2, mucin 2; RELM-β, resistin-like molecule β; TFF3, trefoil factor 3; ZG16, Zymogen granule protein 16.
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always expressed together, some colorectal cancer cell 
lines lack MUC2 while expressing TFF3.84 CRC tissues 
exhibit a deficiency in the ZG16 protein, a feature that 
aligns with negative correlations observed in clinical 
studies regarding distant metastasis and lymphatic inva-
sion. Moreover, ZG16 plays a pivotal role in shaping 
the immune response within CRC by actively inhibiting 
the expression of programmed death-ligand 1 (PD-
L1).85 Co-cultivation of natural killer (NK) cells with a 
medium derived from ZG16-overexpressing cells effec-
tively enhanced both the survival and proliferation of 
NK cells, with this effect being contingent on the expres-
sion of NK group 2 member D. These findings suggest 
that ZG16 may block tumour cell immune escape and 
be a potential target for immunotherapy.85 In addition, 
the altered composition of mucins also influences the 
interaction between tumour cells and the immune 
system. Mucin-associated sTn antigens bind to recep-
tors on macrophages, NK cells and DCs suppressing the 
immune system. This can happen in two ways: Either 
by blocking the cells from recognising other signals by 
receptor masking or by directly reducing their ability 
to attack invaders inhibiting their cytolytic activity. 
This impacts the tumour microenvironment and the 
body’s anti-tumour response.86–88 Furthermore, MUC1 
interactions with innate immune cells hinder the cross-
presentation of processed antigens on major histocom-
patibility complex class I molecules.86–88 MUC1 and 
MUC16 interact with siglecs on DCs, masking TLRs and 
promoting an immature DC phenotype, subsequently 
diminishing T cell effector functions.86–88 Mucins also 
interact with or form aggregates with neutrophils, 
macrophages and platelets, providing protection to 
cancer cells during haematological dissemination and 
facilitating their spread and colonisation to metastatic 
sites.89

Mucinous adenocarcinoma
Mucinous adenocarcinoma is an uncommon type of CRC 
characterised by pools of extracellular mucin comprising 
more than 50% of the tumour mass.90 Unlike other 
types of colorectal cancer, mucinous carcinoma exhibits 
elevated expression levels of MUC2 attributed to dysregu-
lated epigenetic and genetic mechanisms. These include 
promoter hypomethylation of MUC2 and heightened 
binding of the GCs lineage-associated transcription 
factor, protein atonal homolog 1 (ATOH1), to the MUC2 
promoter.91 Investigating the crosstalk between GAPs and 
immune checkpoint pathways, such as programmed cell 
death protein 1/PD-L1 and cytotoxic T-lymphocyte asso-
ciated protein 4, could offer insights into mechanisms of 
immune evasion in CRC.

Pathogen infections
When pathogens breach the delicate intestinal barrier, 
GCs become the frontline soldiers orchestrating a complex 
and dynamic response. Mucins play a key role in fighting 
parasitic infections. Trichuris trichiura, a soil-transmitted 

helminth, heightens mucin production resulting in a 
thicker barrier that defends against worm invasion. Addi-
tionally, MUC5AC directly harms worms, facilitating their 
expulsion.92 Entamoeba histolytica is a protozoan parasite 
that infects humans and exploits MUC2, binding to it for 
access and stimulating hypersecretion. Amoebic colitis 
destroys cellular layers in the colon’s mucosa, enabling 
the parasites to spread to the liver via the bloodstream or 
to other soft organs such as the brain and lungs.93

Bacterial infections also alter the mucin composition. 
For example, Clostridium difficile (C. difficile) is a spore-
forming bacterium known for triggering diarrhoea and 
weight loss contributing to global epidemics with substan-
tial mortality rates. C. difficile infection favours acidic 
mucus rich in MUC1 while reducing levels of MUC2, 
thus compromising the protective barrier.94 Addition-
ally, C. difficile infection elevates levels of N-acetylglu-
cosamine and galactose alongside decreased levels of 
N-acetylgalactosamine.95

On the other hand, deficiencies in mucins increase 
susceptibility to intestinal pathogens which are major 
causes of gastroenteritis in humans. For instance, MUC1 
deficiency increased susceptibility to Campylobacter jejuni 
and MUC2 deficiency enhanced susceptibility to Salmo-
nella typhimurium.96 Moreover, during Salmonella infec-
tions, GAP formation in the small intestine is inhibited 
stopping antigen delivery while the gut is under attack. 
This requires the Myd88-activated EGFR pathway, via 
IL-1β acting on the IL-1 receptor. This coordinated reac-
tion not only hinders bacterial spread to lymph nodes 
but also facilitates evasion of immune defenses.29 Listeria 
monocytogenes, a bacterium notorious for causing one of 
the most severe foodborne illnesses known as Listeriosis, 
can bind to GCs. It uses these cells to traverse the epithe-
lial barrier and evade immune defenses thereby estab-
lishing infection more effectively.29 Bacterial pathogens 
found in food and water, such as enterohemorrhagic E. 
coli, target the IECs leading to inflammation and diar-
rhoea. In a study involving mice infected with C. roden-
tium, a relative of enterohemorrhagic E. coli, increased 
expression and secretion of RELM-β by GCs is necessary 
to attract T lymphocytes to the infected intestine.97 These 
T lymphocytes then produced IL-22, a cytokine that 
directly stimulated epithelial cell proliferation. These 
findings emphasise the crucial role of epithelial/GCs in 
coordinating the host response to intestinal pathogens.97

GCs also serve as targets for several human and mouse 
viruses. Astroviruses, a major cause of childhood diar-
rhoea, primarily infect and replicate within actively 
secreting GCs in mice.98 Similarly, Enterovirus 71 and 
adenovirus HAdV-5p referentially infect and replicate 
in GCs within human epithelial cultures.99 100 Recent 
studies indicate that GCs are susceptible to SARS-CoV-2 
infection.101 102 The virus predominantly infects GCs in 
the bronchial airway because they harbour elevated levels 
of angiotensin-converting enzyme 2 and transmembrane 
protease serine 2 compared with ciliated cells.103 Animal 
studies suggest that angiotensin-converting enzyme 2 
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expression levels influence gut permeability either miti-
gating or exacerbating leaky gut.104 SARS-CoV-2 inter-
action with angiotensin-converting enzyme 2 in the GI 
tract can impair barrier function by disrupting proteins 
like zonula occludens-1, occludin and claudins leading to 
increased inflammatory cytokine production.105 Addition-
ally, intestinal inflammation can further harm the mucosal 
barrier and perpetuate the cytokine storm through the 
actions of lymphocytes, DCs and macrophages.105

Cystic fibrosis
CF results from genetic mutations in the CF transmem-
brane conductance regulator (CFTR) gene which codes 
for an anion channel crucial for chloride and bicarbonate 
secretion across epithelial surfaces.106 Dysfunction in 
CFTR function leads to the accumulation of dehydrated, 
sticky mucus that plugs ducts and glands of epithelia-lined 
organs like the lungs and intestines, a condition termed 
mucoviscidosis.107 This pathologic mucus buildup causes 
luminal acidification, disrupts intestinal motility and can 
result in blockages within the SI. These alterations not 
only disturb the normal balance of gut microbes but 
also hinder the proliferation and differentiation of IECs 
contributing to gut dysbiosis, inflammation, compro-
mised barrier integrity and elevated susceptibility to GI 
disorders, including cancer.107 A prominent feature of 
intestinal mucoviscidosis is GC hyperplasia characterised 
by increased GC numbers, faulty degranulation and the 
production of thick mucus on the epithelial surface.108 
A recent study presents evidence suggesting that GC 
hyperplasia in the small intestine of CFTR-deficient mice 
is not directly caused by impaired CFTR activity in the 
epithelium but rather appears to be a consequence of 
the intestinal environment characteristic of CF.107 Within 
this environment, the upregulation of TLR2 and TLR4 
likely plays crucial roles in modulating inflammation 
and maintaining intestinal homeostasis. It seems that 
TLR2-dependent signalling triggers GC hyperplasia 
which is secondary to reduced Notch signalling. This 
hyperplasia aligns with a terminal GC differentiation 
programme involving changes in the expression of key 
transcription factors including increased ATOH1, SAM 
pointed domain-containing Ets transcription factor 
(SPDEF) and growth factor independence 1 along 
with decreased Neurog3 expression.107 In GCs, mature 
mucin polymers are compacted due to the neutralisation 
of repulsive forces by H+ and Ca2+ ions. On exocytosis, 
extracellular HCO3

− removes these ions causing rapid 
expansion of mucin polymers into mucus gels. CFTR 
loss in CF reduces Cl− and HCO3

− transport critical for 
mucus gel formation.109 Enhanced fucosylation of mucin 
glycans prompted by the activation of fucosyl α1–2 glyco-
syltransferase (FUT2) might additionally elevate mucin 
viscosity.110 Furthermore, studies in the ileum of CF mice 
demonstrated that an elevated luminal concentration of 
HCO3

− facilitates the unfolding of MUC2 which is prob-
ably essential for cleavage by the brush border metallo
endopeptidase meprin β leading to the subsequent 

release of mucus from the mucosal surface of the intes-
tine.111 Mucin secretion in the colon of animal models 
exhibiting CF is contingent on the expression of CFTR 
and CLCA1.112 Experiments have shown that reduced 
expression of CLCA1 in CF mice correlates with thick-
ened and obstructed intestinal mucus in the colon.113 
Recent studies have highlighted gut microbiome changes 
in CF individuals correlated with increased inflammation, 
maldigestion, malabsorption, intestinal lesions and poor 
linear growth.68 114 115

Liver diseases
While GCs and their secreted mucins diligently shield 
the intestinal barrier, their roles become significantly 
more complex in the context of liver diseases. These 
conditions can disrupt the delicate balance in the intes-
tine leading to intestinal bacterial overgrowth, increased 
intestinal permeability, bacterial translocation, intestinal 
inflammation and a cascade of other complications.116–118 
Translocated bacteria can reach the liver via the portal 
vein promoting hepatic inflammation and exacerbating 
liver diseases.116–118 For instance, in alcohol-associated 
liver disease (ALD), in both humans and mice, due to 
factors that are not fully understood, alcohol consump-
tion leads to changes in gut mucin composition and 
an increase in mucosal thickness.116–118 The thickening 
of the gut mucosa and the rise in GC numbers due to 
chronic ethanol exposure entail reductions in canon-
ical Notch signalling within the gut.118 This results in a 
relative increase in genes associated with GCs specifica-
tion, such as ATOH1, CAMP responsive element binding 
protein 3 like 1 and SPDEF, which are typically suppressed 
by Notch 1.118 Interestingly, despite the increase in GC 
numbers, ethanol intake led to significant decreases in 
gut levels of Kruppel-like factor 4, a factor involved along 
with SPDEF in promoting the terminal differentiation of 
GCs.118 Additionally, mice lacking MUC2 are protected 
against alcohol-related disruptions to the gut barrier 
and the development of ALD.116 Furthermore, patients 
with alcohol use disorder showed a decrease in intestinal 
α1–2-fucosylation.119 FUT2 deficient mice, lacking this 
fucosylation, experience heightened ethanol-induced 
liver injury, steatosis and inflammation. Furthermore, 
α1–2-fucosylation diminishes colonisation of cytolysin-
positive E. faecalis in the intestines of ethanol-fed mice.119 
These findings underscore the promising therapeutic 
potential of 2’-fucosyllactose (2FL) for alcohol-associated 
liver disease. Excessive ethanol consumption can also 
result in decreased levels of A. muciniphila in patients. 
This reduction is associated with disruptions in microbial 
metabolite production, compromised intestinal permea-
bility, the onset of chronic inflammation and the release 
of cytokines.120 121 In liver cirrhosis, the gut experiences a 
paradoxical phenomenon. Increased MUC2 and MUC3 
mRNA expression has been found in the ileum of rats 
while MUC5AC production often decreases in the colon 
contributing to the overall weakening of the gut barrier. 
Additionally, the composition of mucins changes with 
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altered glycosylation patterns weakening their ability 
to defend against invaders. This combination of factors 
creates a perfect storm for bacterial translocation, immune 
activation and systemic inflammation, further exacer-
bating the underlying liver disease.122 Single nuclear 
RNA sequencing of the terminal ileum in patients with 
cirrhosis has provided valuable insights into the dynamics 
of GCs throughout different disease stages.123 Advanced 
decompensation is marked by a notable decrease in GC 
numbers compared with healthy individuals whereas 
compensated cirrhosis shows an increased abundance 
of GCs compared with controls.123 Furthermore, analysis 
of gene expression patterns reveals significant upregu-
lation of pro-inflammatory cytokines such as IL-1, IL-6 
and TNF-related genes in GCs, particularly in advanced 
decompensation cases. Interestingly, within the advanced 
decompensation group, there is a decrease in the expres-
sion of GCs differentiation markers FCGBP, CLCA1 and 
SPDEF alongside heightened expression of MUC2, which 
facilitates mucin production.123 Moreover, advanced 
decompensated patients display elevated expression of 
inflammatory mediators such as STAT1, interferon-alpha 
2, interferon-gamma and interferon regulatory factors 
indicating heightened immune activation. However, all 
patients with cirrhosis exhibit lower eukaryotic initia-
tion factor 2 signalling levels and increased expression 
of the transcription factor forkhead box O3 compared 
with healthy controls suggesting dysregulated cellular 
responses in cirrhosis.123 The inhibition of small intes-
tinal GAP is intricately linked to the development of 
ALD. Despite chronic alcohol consumption leading to an 
increase in both small intestinal and colonic GCs along 
with heightened protective mucin secretion in mice, an 
intriguing trade-off emerges: This augmentation occurs 
at the expense of small intestinal GAP formation thereby 
suppressing small intestinal GAPs. This phenomenon 
can be attributed to the downregulation of the Chrm4 
gene, responsible for encoding mAChR4. Consequently, 
the decreased expression of mAChR4 culminates in a 
diminished population of tolerogenic DCs and Tregs. 
This inflammatory milieu consequently facilitates bacte-
rial infiltration into the liver exacerbating the onset of 
ethanol-induced steatohepatitis.124

On the other hand, in metabolic dysfunction-associated 
steatotic liver disease (MASLD), preclinical studies have 
revealed a decrease in the number of GCs observed in 
the ileal crypts125 126 and colon.127 MUC2-deficient mice 
displayed better glucose control, reduced inflammation 
and increased gene expression involved in fat burning 
within fat tissue.128 Additionally, they exhibited higher 
levels of IL-22 and its target genes associated with gut 
protection. The findings suggest that the absence of the 
mucus barrier activates the immune system leading to 
IL-22 production which helps protect against the meta-
bolic effects of a high-fat diet.128 However, FUT2-deficient 
mice, despite consuming more calories, are protected 
from MASLD exhibiting increased energy expenditure 
and thermogenesis.129 This protection can be transferred 

to wild-type mice via microbiota exchange and is reduced 
with antibiotic treatment.129 FUT2 deficiency attenuates 
diet-induced bile acid accumulation and enhances intes-
tinal farnesoid X receptor/fibroblast growth factor 15 
signalling, inhibiting hepatic bile acid synthesis. Dietary 
supplementation of α1–2-fucosylated glycans reverses 
the protective effects of FUT2 deficiency indicating the 
critical role of intestinal α1–2-fucosylation in obesity and 
steatohepatitis pathogenesis.129

Taken together, these findings suggest that the roles of 
intestinal GCs and GAPs extend beyond their immediate 
function in the gut.

ADVANCING THERAPEUTIC STRATEGIES TARGETING GOBLET 
CELLS AND MUCIN-ASSOCIATED MICROBIOME
Interventions targeting GC function to modulate mucin 
production and secretion, thereby reinforcing the protec-
tive barrier of the intestinal epithelium, are imperative 
for advancing current treatments of GI pathologies. 
Online supplemental file 1 overviews recent efforts to 
develop therapies based on these strategies. Briefly, Janus 
kinase (JAK) inhibitors block JAK protein activity, thus 
preventing the STAT pathway from triggering inflam-
mation. JAK inhibitors increase the number of GCs and 
TNF-α, MyD88 and NF-κB2 levels, promoting mucosal 
healing.130–133

Notch receptors play a crucial role in regulating the 
differentiation of colonic GC and stem cells.134 Dysregu-
lated activation of Notch 1 is implicated in the severity of 
GI diseases such as CRC, IBD and MASLD. Small mole-
cule inhibitors targeting γ-secretase, which mediates the 
final cleavage step of Notch receptors, can block Notch 
1 activation in CRC135 reducing the migration and inva-
sive capacity of CRC cells in vitro and decreasing tumour 
burden in vivo, but it also increases intestinal GCs.136 The 
systemic use of currently available γ-secretase inhibitors is 
associated with various adverse effects including massive 
diarrhoea due to increased GC differentiation.137 A 
nanoparticle-mediated delivery system targeting γ-secre-
tase inhibitors in the liver has been developed avoiding 
GCs metaplasia caused by intestinal Notch inhibition and 
reducing hepatic fibrosis and inflammation.138 However, 
further investigation in this field is warranted.

Mucolytics like bromelain and N-acetylcysteine 
break down the mucus layer surrounding cancer cells 
enhancing the delivery and effectiveness of chemotherapy 
in CRC139 140 and help removing intestinal obstructions 
in CF.141 Probiotics and faecal microbiota transplanta-
tion can boost beneficial mucin-associated bacteria, such 
as Bifidobacteria or A. muciniphila reducing intestinal 
inflammation, regulating immunity and strengthening 
the gut barrier.142–148 Moreover, studies have revealed that 
the consumption of the prebiotic inulin initiates a notable 
remodelling of the epithelium in the mouse colon.149 
This remodelling is marked by heightened proliferation 
of intestinal stem cells and augmented differentiation of 
GCs. Notably, these effects are contingent on the presence 
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of the gut microbiota, the activity of γδ T lymphocytes and 
the availability of IL-22.149 The impact of other prebiotics 
like 2FL on GI diseases remains unclear. While restoring 
gut fucosylation with 2FL improves ALD in mice,119 
it paradoxically worsens liver disease and promotes 
hepatic steatosis in a MASLD model.129 A promising new 
therapeutic approach for ALD is VU0467154, a posi-
tive allosteric modulator of the mAChR4.124 Preclinical 
studies suggest it induces GAPs which may be linked to 
several beneficial effects such as modulation of immune 
cells, production of REG3 lectins, reduced bacterial 
translocation and overall improvement of ALD. Further 
insights into the regulatory mechanisms governing mucin 
alterations are essential. Additionally, understanding the 
impact of colonic and small intestinal GAP formation is 
vital. These efforts are fundamental for advancing novel 
therapeutic approaches in managing intestinal diseases, 
marking a promising avenue for exploration.

CONCLUSION
The intricate interplay between GCs, the mucus layer and 
the immune system is a crucial determinant of gut health, 
safeguarding against a range of diseases and encom-
passing the involvement of GAPs, goblet-secreted factors 
and the mucus layer composition. Abundant evidence 
from both patient studies and animal models reveals 
that alterations in the mucus layer, abnormal protein 
modifications after synthesis and variations in crucial 
mucin production heavily influence the development 
and severity of various conditions. Whether addressing 
intestinal infections, CRC, IBD or liver disease, mainte-
nance of balanced and healthy mucin levels emerges as 
a critical factor. Investigating the complex relationship 
between GCs, the microbiome, GAPs and the immune 
system holds immense potential for developing novel 
therapeutic strategies for various gut diseases.
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